Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAC Antimicrob Resist ; 6(2): dlae031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38449517

RESUMO

Background: Multidrug resistant Pseudomonas aeruginosa (PA) represents a serious threat to hospitalized patients. Characterizing the incidence of PA infection and degree of resistance can inform empiric treatment and preventative measures. Objectives: We sought to describe trends in incidence and resistance characteristics of PA bloodstream infections (BSI) observed within the Veterans Health Administration (VHA) system and identify factors contributing to higher observed mortality within this population. Methods: We characterized demographic and clinical features of unique patients among the VHA population presenting with their first episode of PA-BSI between 2009 and 2022 and summarized trends related to mortality and resistance phenotype based on year and geographical location. We additionally used logistic regression analysis to identify predictors of 30-day mortality among this cohort. Results: We identified 8039 PA-BSIs during the study period, 32.7% of which were hospital onset. Annual PA-BSI cases decreased by 35.8%, and resistance among all antimicrobial classes decreased during the study period, while the proportion of patients receiving early active treatment based on susceptibility testing results increased. Average 30-day mortality rate was 23.3%. Higher Charlson Comorbidity Index, higher mAPACHE score, VHA facility complexity 1b and hospital-onset cases were associated with higher mortality, and early active treatment was associated with lower mortality. Conclusions: PA-BSI resistance decreased across the VHA system during the study period. Further investigation of antimicrobial stewardship measures possibly contributing to the observed decreased resistance in this cohort and identification of measures to improve on the high mortality associated with PA-BSI in the VHA population is warranted.

2.
J Med Chem ; 67(5): 3795-3812, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38373290

RESUMO

Antimicrobial resistance is a global public health threat. Metallo-ß-lactamases (MBLs) inactivate ß-lactam antibiotics, including carbapenems, are disseminating among Gram-negative bacteria, and lack clinically useful inhibitors. The evolving bisthiazolidine (BTZ) scaffold inhibits all three MBL subclasses (B1-B3). We report design, synthesis, and evaluation of BTZ analogues. Structure-activity relationships identified the BTZ thiol as essential, while carboxylate is replaceable, with its removal enhancing potency by facilitating hydrophobic interactions within the MBL active site. While the introduction of a flexible aromatic ring is neutral or detrimental for inhibition, a rigid (fused) ring generated nM benzobisheterocycle (BBH) inhibitors that potentiated carbapenems against MBL-producing strains. Crystallography of BBH:MBL complexes identified hydrophobic interactions as the basis of potency toward B1 MBLs. These data underscore BTZs as versatile, potent broad-spectrum MBL inhibitors (with activity extending to enzymes refractory to other inhibitors) and provide a rational approach to further improve the tricyclic BBH scaffold.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases/química , Carbapenêmicos , Bactérias Gram-Negativas
3.
Antimicrob Agents Chemother ; 68(2): e0133223, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38174924

RESUMO

Taniborbactam (TAN; VNRX-5133) is a novel bicyclic boronic acid ß-lactamase inhibitor (BLI) being developed in combination with cefepime (FEP). TAN inhibits both serine and some metallo-ß-lactamases. Previously, the substitution R228L in VIM-24 was shown to increase activity against oxyimino-cephalosporins like FEP and ceftazidime (CAZ). We hypothesized that substitutions at K224, the homologous position in NDM-1, could impact FEP/TAN resistance. To evaluate this, a library of codon-optimized NDM K224X clones for minimum inhibitory concentration (MIC) measurements was constructed; steady-state kinetics and molecular docking simulations were next performed. Surprisingly, our investigation revealed that the addition of TAN restored FEP susceptibility only for NDM-1, as the MICs for the other 19 K224X variants remained comparable to those of FEP alone. Moreover, compared to NDM-1, all K224X variants displayed significantly lower MICs for imipenem, tebipenem, and cefiderocol (32-, 133-, and 33-fold lower, respectively). In contrast, susceptibility to CAZ was mostly unaffected. Kinetic assays with the K224I variant, the only variant with hydrolytic activity to FEP comparable to NDM-1, confirmed that the inhibitory capacity of TAN was modestly compromised (IC50 0.01 µM vs 0.14 µM for NDM-1). Lastly, structural modeling and docking simulations of TAN in NDM-1 and in the K224I variant revealed that the hydrogen bond between TAN's carboxylate with K224 is essential for the productive binding of TAN to the NDM-1 active site. In addition to the report of NDM-9 (E149K) as FEP/TAN resistant, this study demonstrates the fundamental role of single amino acid substitutions in the inhibition of NDM-1 by TAN.


Assuntos
Antibacterianos , Ácidos Borínicos , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Ácidos Carboxílicos/farmacologia , Ácidos Borínicos/farmacologia , Ceftazidima , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
4.
Artigo em Inglês | MEDLINE | ID: mdl-38156202

RESUMO

Objective: Pseudomonas aeruginosa bloodstream infection (PA-BSI) and COVID-19 are independently associated with high mortality. We sought to demonstrate the impact of COVID-19 coinfection on patients with PA-BSI. Design: Retrospective cohort study. Setting: Veterans Health Administration. Patients: Hospitalized patients with PA-BSI in pre-COVID-19 (January 2009 to December 2019) and COVID-19 (January 2020 to June 2022) periods. Patients in the COVID-19 period were further stratified by the presence or absence of concomitant COVID-19 infection. Methods: We characterized trends in resistance, treatment, and mortality over the study period. Multivariable logistic regression and modified Poisson analyses were used to determine the association between COVID-19 and mortality among patients with PA-BSI. Additional predictors included demographics, comorbidities, disease severity, antimicrobial susceptibility, and treatment. Results: A total of 6,714 patients with PA-BSI were identified. Throughout the study period, PA resistance rates decreased. Mortality decreased during the pre-COVID-19 period and increased during the COVID-19 period. Mortality was not significantly different between pre-COVID-19 (24.5%, 95% confidence interval [CI] 23.3-28.6) and COVID-19 period/COVID-negative (26.0%, 95% CI 23.5-28.6) patients, but it was significantly higher in COVID-19 period/COVID-positive patients (47.2%, 35.3-59.3). In the modified Poisson analysis, COVID-19 coinfection was associated with higher mortality (relative risk 1.44, 95% CI 1.01-2.06). Higher Charlson Comorbidity Index, higher modified Acute Physiology and Chronic Health Evaluation score, and no targeted PA-BSI treatment within 48 h were also predictors of higher mortality. Conclusions: Higher mortality was observed in patients with COVID-19 coinfection among patients with PA-BSI. Future studies should explore this relationship in other settings and investigate potential SARS-CoV-2 and PA synergy.

5.
Antimicrob Agents Chemother ; 67(11): e0079123, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37850746

RESUMO

A wide variety of clinically observed single amino acid substitutions in the Ω-loop region have been associated with increased minimum inhibitory concentrations and resistance to ceftazidime (CAZ) and ceftolozane (TOL) in Pseudomonas-derived cephalosporinase and other class C ß-lactamases. Herein, we demonstrate the naturally occurring tyrosine to histidine substitution of amino acid 221 (Y221H) in Pseudomonas-derived cephalosporinase (PDC) enables CAZ and TOL hydrolysis, leading to similar kinetic profiles (k cat = 2.3 ± 0.2 µM and 2.6 ± 0.1 µM, respectively). Mass spectrometry of PDC-3 establishes the formation of stable adducts consistent with the formation of an acyl enzyme complex, while spectra of E219K (a well-characterized, CAZ- and TOL-resistant comparator) and Y221H are consistent with more rapid turnover. Thermal denaturation experiments reveal decreased stability of the variants. Importantly, PDC-3, E219K, and Y221H are all inhibited by avibactam and the boronic acid transition state inhibitors (BATSIs) LP06 and S02030 with nanomolar IC50 values and the BATSIs stabilize all three enzymes. Crystal structures of PDC-3 and Y221H as apo enzymes and complexed with LP06 and S02030 (1.35-2.10 Å resolution) demonstrate ligand-induced conformational changes, including a significant shift in the position of the sidechain of residue 221 in Y221H (as predicted by enhanced sampling well-tempered metadynamics simulations) and extensive hydrogen bonding between the enzymes and BATSIs. The shift of residue 221 leads to the expansion of the active site pocket, and molecular docking suggests substrates orientate differently and make different intermolecular interactions in the enlarged active site compared to the wild-type enzyme.


Assuntos
Ceftazidima , Cefalosporinase , Ceftazidima/farmacologia , Cefalosporinase/metabolismo , Pseudomonas/genética , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo , Engenharia de Proteínas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Compostos Azabicíclicos/farmacologia , Pseudomonas aeruginosa/metabolismo , Combinação de Medicamentos
6.
Curr Opin Infect Dis ; 36(6): 572-584, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846568

RESUMO

PURPOSE OF REVIEW: Stenotrophomonas maltophilia is an emerged opportunistic pathogen. Intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Herein, we provide an update on the most recent literature on treatment options for severe S. maltophilia infections. RECENT FINDINGS: Trimethoprim-sulfamethoxazole (SXT) is recognized as the first-line therapy for S. maltophilia infections. However, its clinical use is based on good in vitro activity and favorable clinical outcomes, rather than on solid minimum inhibitory concentration (MIC) correlations with pharmacokinetic/pharmacodynamics (PK/PD) and/or clinical outcomes. The same is true for other treatment options like levofloxacin (LVX) and minocycline (MIN). Recent PK/PD studies question the current clinical breakpoints for SXT, LVX, and MIN. Based on this, the latest guidance issued by the Infectious Diseases Society of America (IDSA) recommends using these agents only as part of a combination therapy. Alternatively, novel therapeutic options such as cefiderocol (FDC) and ceftazidime-avibactam plus aztreonam (CZA-ATM) are suggested, based on limited but promising clinical data. SUMMARY: PK/PD data and controlled clinical studies are needed to optimize current treatment options. Presently, combination therapy of SXT, LVX, MIN, or FDC, or monotherapy with CZA-ATM are recommended therapeutic options for severe-to-moderate S. maltophilia infections.


Assuntos
Stenotrophomonas maltophilia , Humanos , Terapia Combinada , Aztreonam , Testes de Sensibilidade Microbiana , Minociclina
8.
Antimicrob Agents Chemother ; 67(11): e0049823, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37768313

RESUMO

The novel clinical-stage ß-lactam-ß-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D ß-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.


Assuntos
Complexo Burkholderia cepacia , Burkholderia gladioli , Fibrose Cística , Humanos , Estados Unidos , Cefepima/farmacologia , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases , Testes de Sensibilidade Microbiana
9.
J Biol Chem ; 299(5): 104606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924941

RESUMO

L1 is a dizinc subclass B3 metallo-ß-lactamase (MBL) that hydrolyzes most ß-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed ß-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the ß-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1ß-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1ß-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1ß-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (ß) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and ß-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , beta-Lactamas , Humanos , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamas/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , Carbapenêmicos/metabolismo , Cristalografia , Cinética , Stenotrophomonas maltophilia/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico
10.
Elife ; 122023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826989

RESUMO

ß-Lactam antibiotics are the most important and widely used antibacterial agents across the world. However, the widespread dissemination of ß-lactamases among pathogenic bacteria limits the efficacy of ß-lactam antibiotics. This has created a major public health crisis. The use of ß-lactamase inhibitors has proven useful in restoring the activity of ß-lactam antibiotics, yet, effective clinically approved inhibitors against class B metallo-ß-lactamases are not available. L1, a class B3 enzyme expressed by Stenotrophomonas maltophilia, is a significant contributor to the ß-lactam resistance displayed by this opportunistic pathogen. Structurally, L1 is a tetramer with two elongated loops, α3-ß7 and ß12-α5, present around the active site of each monomer. Residues in these two loops influence substrate/inhibitor binding. To study how the conformational changes of the elongated loops affect the active site in each monomer, enhanced sampling molecular dynamics simulations were performed, Markov State Models were built, and convolutional variational autoencoder-based deep learning was applied. The key identified residues (D150a, H151, P225, Y227, and R236) were mutated and the activity of the generated L1 variants was evaluated in cell-based experiments. The results demonstrate that there are extremely significant gating interactions between α3-ß7 and ß12-α5 loops. Taken together, the gating interactions with the conformational changes of the key residues play an important role in the structural remodeling of the active site. These observations offer insights into the potential for novel drug development exploiting these gating interactions.


Assuntos
Antibacterianos , beta-Lactamases , Domínio Catalítico , Antibacterianos/farmacologia , beta-Lactamases/metabolismo , Penicilinas
11.
Antimicrob Agents Chemother ; 67(1): e0093022, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602311

RESUMO

Design of novel ß-lactamase inhibitors (BLIs) is one of the currently accepted strategies to combat the threat of cephalosporin and carbapenem resistance in Gram-negative bacteria. Boronic acid transition state inhibitors (BATSIs) are competitive, reversible BLIs that offer promise as novel therapeutic agents. In this study, the activities of two α-amido-ß-triazolylethaneboronic acid transition state inhibitors (S02030 and MB_076) targeting representative KPC (KPC-2) and CTX-M (CTX-M-96, a CTX-M-15-type extended-spectrum ß-lactamase [ESBL]) ß-lactamases were evaluated. The 50% inhibitory concentrations (IC50s) for both inhibitors were measured in the nanomolar range (2 to 135 nM). For S02030, the k2/K for CTX-M-96 (24,000 M-1 s-1) was twice the reported value for KPC-2 (12,000 M-1 s-1); for MB_076, the k2/K values ranged from 1,200 M-1 s-1 (KPC-2) to 3,900 M-1 s-1 (CTX-M-96). Crystal structures of KPC-2 with MB_076 (1.38-Å resolution) and S02030 and the in silico models of CTX-M-96 with these two BATSIs show that interaction in the CTX-M-96-S02030 and CTX-M-96-MB_076 complexes were overall equivalent to that observed for the crystallographic structure of KPC-2-S02030 and KPC-2-MB_076. The tetrahedral interaction surrounding the boron atom from S02030 and MB_076 creates a favorable hydrogen bonding network with S70, S130, N132, N170, and S237. However, the changes from W105 in KPC-2 to Y105 in CTX-M-96 and the missing residue R220 in CTX-M-96 alter the arrangement of the inhibitors in the active site of CTX-M-96, partially explaining the difference in kinetic parameters. The novel BATSI scaffolds studied here advance our understanding of structure-activity relationships (SARs) and illustrate the importance of new approaches to ß-lactamase inhibitor design.


Assuntos
Triazóis , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Penicilinas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
12.
Front Microbiol ; 13: 1035609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353456

RESUMO

Objectives: Identify molecular mechanisms responsible for the in vitro non-susceptibility to ceftolozane/tazobactam (TOL) in a group of 158 clinical isolates of Pseudomonas aeruginosa from five Latin American countries collected before the introduction of TOL into the clinical practice. Methods: Clinical isolates of P. aeruginosa (n = 504) were collected between January 2016 and October 2017 from 20 hospitals located in Argentina, Brazil, Chile, Colombia, and Mexico. Minimum inhibitory concentrations (MICs) to TOL were determined by standard broth microdilution and interpreted according to CLSI breakpoints. Initially, production of carbapenemases in TOL non-susceptible isolates was assessed by Rapidec® followed by qPCR to detect bla KPC, bla NDM-1, bla VIM, and bla IMP. Illumina® WGS was performed for isolates in which non-susceptibility to TOL was not mediated by carbapenemases. Results: A total of 158 (31.3%) isolates were non-susceptible to TOL. In 74 (46.8%) of these isolates, non-susceptibility to TOL was explained by the production of at least one carbapenemase. WGS revealed that some isolates carried ESBLs, mutated bla PDC and ampD, associated with decreased susceptibility to TOL. Conclusion: Substitutions found in PDC and carbapenemase production were the most common presumed mechanisms of resistance to TOL detected in this study. This study shows that epidemiological surveillance is warranted to monitor the emergence of novel mechanisms of resistance to TOL that might compromise its clinical utility.

13.
Antibiotics (Basel) ; 11(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009970

RESUMO

BACKGROUND: Ceftolozane/tazobactam (C/T) is a combination of an antipseudomonal oxyiminoaminothiazolyl cephalosporin with potent in vitro activity against Pseudomonas aeruginosa and tazobactam, a known ß-lactamase inhibitor. The aim of this study was to evaluate the activity of C/T against clinical isolates of P. aeruginosa and Enterobacterales collected from five Latin American countries between 2016 and 2017, before its clinical use in Latin America, and to compare it with the activity of other available broad-spectrum antimicrobial agents. METHODS: a total of 2760 clinical isolates (508 P. aeruginosa and 2252 Enterobacterales) were consecutively collected from 20 hospitals and susceptibility to C/T and comparator agents was tested and interpreted following the current guidelines. RESULTS: according to the CLSI breakpoints, 68.1% (346/508) of P. aeruginosa and 83.9% (1889/2252) of Enterobacterales isolates were susceptible to C/T. Overall, C/T demonstrated higher in vitro activity than currently available cephalosporins, piperacillin/tazobactam and carbapenems when tested against P. aeruginosa, and its performance in vitro was comparable to fosfomycin. When tested against Enterobacterales, it showed higher activity than cephalosporins and piperacillin/tazobactam, and similar activity to ertapenem. CONCLUSIONS: these results show that C/T is an active ß-lactam agent against clinical isolates of P. aeruginosa and Enterobacterales.

14.
JAC Antimicrob Resist ; 4(3): dlac040, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35529051

RESUMO

Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.

15.
Lancet Infect Dis ; 22(1): e28-e34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34246322

RESUMO

Due to their superior tolerability and efficacy, ß-lactams are the most potent and prescribed class of antibiotics in the clinic. The emergence of resistance to those antibiotics, mainly due to the production of bacterial enzymes called ß-lactamases, has been partially solved by the introduction of ß-lactamase inhibitors, which restore the activity of otherwise obsolete molecules. This solution is limited because currently available ß-lactamase inhibitors only work against serine ß-lactamases, whereas metallo-ß-lactamases continue to spread, evolve, and confer resistance to all ß-lactams, including carbapenems. Furthermore, the increased use of antibiotics to treat secondary bacterial pneumonia in severely sick patients with COVID-19 might exacerbate the problem of antimicrobial resistance. In this Personal View, we summarise the main advances accomplished in this area of research, emphasise the main challenges that need to be solved, and the importance of research on inhibitors for metallo-B-lactamases amidst the current pandemic.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Saúde Global , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamas/farmacologia , Bactérias/enzimologia , Bactérias/patogenicidade , COVID-19/complicações , COVID-19/microbiologia , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Humanos
16.
ACS Infect Dis ; 7(9): 2697-2706, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34355567

RESUMO

Metallo-ß-lactamase (MBL) production in Gram-negative bacteria is an important contributor to ß-lactam antibiotic resistance. Combining ß-lactams with ß-lactamase inhibitors (BLIs) is a validated route to overcoming resistance, but MBL inhibitors are not available in the clinic. On the basis of zinc utilization and sequence, MBLs are divided into three subclasses, B1, B2, and B3, whose differing active-site architectures hinder development of BLIs capable of "cross-class" MBL inhibition. We previously described 2-mercaptomethyl thiazolidines (MMTZs) as B1 MBL inhibitors (e.g., NDM-1) and here show that inhibition extends to the clinically relevant B2 (Sfh-I) and B3 (L1) enzymes. MMTZs inhibit purified MBLs in vitro (e.g., Sfh-I, Ki 0.16 µM) and potentiate ß-lactam activity against producer strains. X-ray crystallography reveals that inhibition involves direct interaction of the MMTZ thiol with the mono- or dizinc centers of Sfh-I/L1, respectively. This is further enhanced by sulfur-π interactions with a conserved active site tryptophan. Computational studies reveal that the stereochemistry at chiral centers is critical, showing less potent MMTZ stereoisomers (up to 800-fold) as unable to replicate sulfur-π interactions in Sfh-I, largely through steric constraints in a compact active site. Furthermore, in silico replacement of the thiazolidine sulfur with oxygen (forming an oxazolidine) resulted in less favorable aromatic interactions with B2 MBLs, though the effect is less than that previously observed for the subclass B1 enzyme NDM-1. In the B3 enzyme L1, these effects are offset by additional MMTZ interactions with the protein main chain. MMTZs can therefore inhibit all MBL classes by maintaining conserved binding modes through different routes.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/farmacologia , Tiazolidinas , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas
17.
Front Public Health ; 9: 686789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409007

RESUMO

The genus Raoultella was established in 2001. Species of Raoultella and Klebsiella share many ecological, biochemical, clinical, and microbiological features. Given the shortcomings of available technology for species identification in the clinical microbiology laboratory, are practically indistinguishable. Since the late 2000s there has been an increase in case reports of human Raoultella infections. Therefore, several authors are postulating that Raoultella spp. are rare and/or emerging pathogens. Conclusions:Raoultella spp. are very similar to Klebsiella spp. The epidemiology and the clinical relevance of the human Raoultella spp. infections is uncertain and further studies are required. The previous difficulties in the identification of Raoultella spp. and the introduction of more precise identification techniques may explain the recent increase in the number of case reports. Raoultella spp. might be rather underdiagnosed than rare or emerging pathogens.


Assuntos
Infecções por Enterobacteriaceae , Infecções por Enterobacteriaceae/diagnóstico , Humanos , Klebsiella
18.
Chem Sci ; 12(8): 2898-2908, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34164056

RESUMO

Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-ß-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all ß-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., K i = 0.44 µM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(ii) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than d/l-captopril. Unexpectedly, MMTZ binding features a thioether-π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur-π interactions can be exploited for general ligand design in medicinal chemistry.

19.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755013

RESUMO

Understanding allostery in enzymes and tools to identify it offer promising alternative strategies to inhibitor development. Through a combination of equilibrium and nonequilibrium molecular dynamics simulations, we identify allosteric effects and communication pathways in two prototypical class A ß-lactamases, TEM-1 and KPC-2, which are important determinants of antibiotic resistance. The nonequilibrium simulations reveal pathways of communication operating over distances of 30 Å or more. Propagation of the signal occurs through cooperative coupling of loop dynamics. Notably, 50% or more of clinically relevant amino acid substitutions map onto the identified signal transduction pathways. This suggests that clinically important variation may affect, or be driven by, differences in allosteric behavior, providing a mechanism by which amino acid substitutions may affect the relationship between spectrum of activity, catalytic turnover, and potential allosteric behavior in this clinically important enzyme family. Simulations of the type presented here will help in identifying and analyzing such differences.


Antibiotics are crucial drugs for treating and preventing bacterial infections, but some bacteria are evolving ways to resist their effects. This 'antibiotic resistance' threatens lives and livelihoods worldwide. ß-lactam antibiotics, like penicillin, are some of the most commonly used, but some bacteria can now make enzymes called ß-lactamases, which destroy these antibiotics. Dozens of different types of ß-lactamases now exist, each with different properties. Two of the most medically important are TEM-1 and KPC-2. One way to counteract ß-lactamases is with drugs called inhibitors that stop the activity of these enzymes. The approved ß-lactamase inhibitors work by blocking the part of the enzyme that binds and destroys antibiotics, known as the 'active site'. The ß-lactamases have evolved, some of which have the ability to resist the effects of known inhibitors. It is possible that targeting parts of ß-lactamases far from the active site, known as 'allosteric sites', might get around these new bacterial defences. A molecule that binds to an allosteric site might alter the enzyme's shape, or restrict its movement, making it unable to do its job. Galdadas, Qu et al. used simulations to understand how molecules binding at allosteric sites affect enzyme movement. The experiments examined the structures of both TEM-1 and KPC-2, looking at how their shapes changed as molecules were removed from the allosteric site. This revealed how the allosteric sites and the active site are linked together. When molecules were taken out of the allosteric sites, they triggered ripples of shape change that travelled via loop-like structures across the surface of the enzyme. These loops contain over half of the known differences between the different types of ß-lactamases, suggesting mutations here may be responsible for changing which antibiotics each enzyme can destroy. In other words, changes in the 'ripples' may be related to the ability of the enzymes to resist particular antibiotics. Understanding how changes in one part of a ß-lactamase enzyme reach the active site could help in the design of new inhibitors. It might also help to explain how ß-lactamases evolve new properties. Further work could show why different enzymes are more or less active against different antibiotics.


Assuntos
Farmacorresistência Bacteriana , Simulação de Dinâmica Molecular , beta-Lactamases/química , Substituição de Aminoácidos , Conformação Proteica
20.
Artigo em Inglês | MEDLINE | ID: mdl-33782013

RESUMO

Ceftazidime (CAZ)-avibactam (AVI) is a ß-lactam/ß-lactamase inhibitor combination with activity against type A and type C ß-lactamases. Resistance emergence has been seen, with multiple mechanisms accounting for the resistance. We performed four experiments in the dynamic hollow-fiber infection model, delineating the linkage between drug exposure and both the rate of bacterial kill and resistance emergence by all mechanisms. The Pseudomonas aeruginosa isolate had MICs of 1.0 mg/liter (CAZ) and 4 mg/liter (AVI). We demonstrated that the time at ≥4.0 mg/liter AVI was linked to the rate of bacterial kill. Linkage to resistance emergence/suppression was more complex. In one experiment in which CAZ and AVI administration was intermittent and continuous, respectively, and in which AVI was given in unitary steps from 1 to 8 mg/liter, AVI at up to 3 mg/liter allowed resistance emergence, whereas higher values did not. The threshold value was 3.72 mg/liter as a continuous infusion to counterselect resistance (AVI area under the concentration-time curve [AUC] of 89.3 mg · h/liter). The mechanism involved a 7-amino-acid deletion in the Ω-loop region of the Pseudomonas-derived cephalosporinase (PDC) ß-lactamase. Further experiments in which CAZ and AVI were both administered intermittently with regimens above and below the AUC of 89.3 mg · h/liter resulted in resistance in the lower-exposure groups. Deletion mutants were not identified. Finally, in an experiment in which paired exposures as both continuous and intermittent infusions were performed, the lower value of 25 mg · h/liter by both profiles allowed selection of deletion mutants. Of the five instances in which these mutants were recovered, four had a continuous-infusion profile. Both continuous-infusion administration and low AVI AUC exposures have a role in selection of this mutation.


Assuntos
Ceftazidima , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinase , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Pseudomonas , Pseudomonas aeruginosa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...